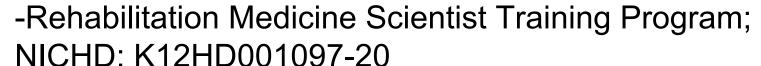
Molly Fuentes, MD, MS
UW Department of Rehabilitation Medicine
Thomas Weiser, MD, MPH
Portland Area IHS, Northwest Portland Area Indian Health Board

# Describing Disability Among Children Served by the Portland Area IHS


Northwest NARCH Tribal Research Conference April 27, 2018





#### **Start with gratitude**

- -Tom Weiser, MD, MPH
- -Fred Rivara, MD, MPH
- -Kristie Bjornson, PhD
- -Marisa Osorio, MD
- -Elaine Tsao, MD
- -Cheryl Kerfeld, PhD
- -Larry Layne, PhD









# **About Molly**





- Member of the Confederated Tribes of Warm Springs
- Goal of being a physician since the age of 4
- April 27, 1996
  - Sister with C1 spinal cord injury
  - Inpatient rehabilitation for 2 months
  - Family had to move from Warm Springs
  - Exposure to many fields of medicine





#### **About me**

- With IHS since 1998
- Inspired to a career in medicine by my parents
- August 16, 1958
  - Mother diagnosed with polio at age 21
  - Hospitalized for 9 months
  - Used crutches/wheelchair
  - Later in life developed post-polio syndrome







Molly Fuentes, MD, MS and Capt. Thomas Weiser, MD, MPH

- This study aims to describe among children served by the Portland Area Indian Health Service (PAIHS):
  - Prevalence of children with disabling diagnoses
  - Most common disabling diagnoses
  - Proportion of visits associated with disabling diagnoses.
  - Types of health care services used by children with disabling diagnoses









## **Defining Disability**

- 2006 UN Convention on the Rights of Persons with Disabilities
  - "Persons with disabilities include those who have long-term physical, mental, intellectual or sensory impairments which in interaction with various barriers may hinder their full and effective participation in society on an equal basis with others."



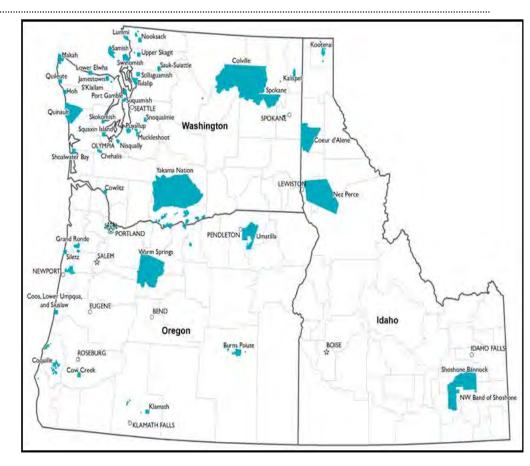






## **Defining Disability**

- Children With Disabilities Algorithm (CWDA, Chien et al)
  - Developed by multidisciplinary team (including parents) to identify children with disabilities from administrative or clinical databases
  - Tool to evaluate quality of care for children with disabilities
  - 669 ICD-9 diagnostic codes likely to indicate a child with disability
  - We grouped these diagnostic codes into broader diagnostic categories, etiologic categories and impairment categories







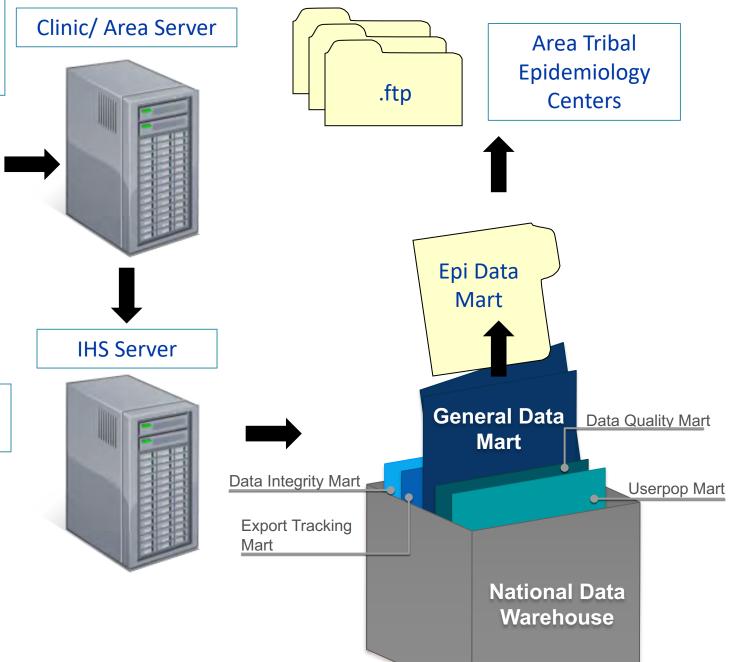



- Portland Area Indian Health Service records, 2006-2014
  - Epi Data Mart
  - All encounter records for children age 0 to17-yearsold and identified as Al/AN












Patient Visit,
IHS/Tribal/Urban
Site



Electronic reporting systems



#### Identifying individuals with CWDA

#### Numerator:

 For each year, we identified case-patients as any American Indian/Alaska Native, 17 or younger at the time of their visit who was seen at least once in that calendar year with a CWDA diagnosis

#### Denominator

 Patients who were Al/AN, 17 or younger with at least 1 visit in the past 3 years









- Identified CWDA diagnoses coded in the first 11 ICD-9 fields
- Each encounter could have multiple diagnoses
  - e.g. Cerebral palsy, hemiplegia, acute upper respiratory infection, and vitamin D deficiency
- Encounters were classified by impairment group and etiology.

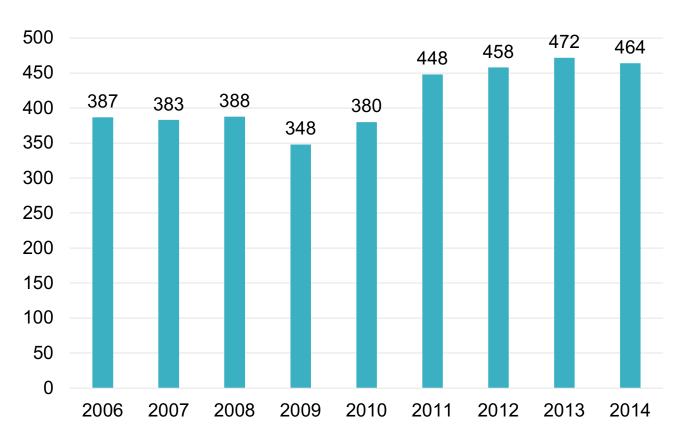








- To determine impairment categories, five pediatric rehabilitation professionals assigned functional impairment categories to each diagnostic code
  - Physical, cognitive, communication, sensory, or emotional impairments
- Differences in these assignments were resolved by consensus among the five raters







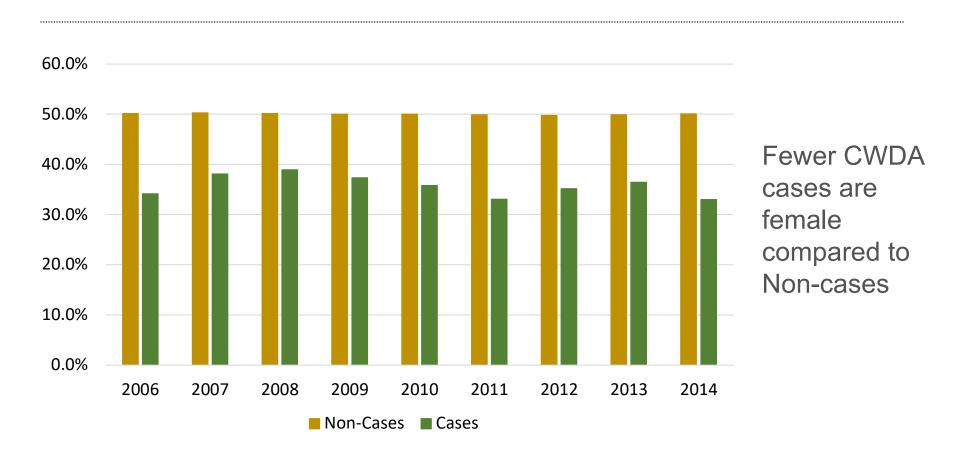



#### Number of Children with CWDA Diagnoses, by Year



2,507 unique children with CWDA diagnoses

Period Prevalence of CWDA=1.5%



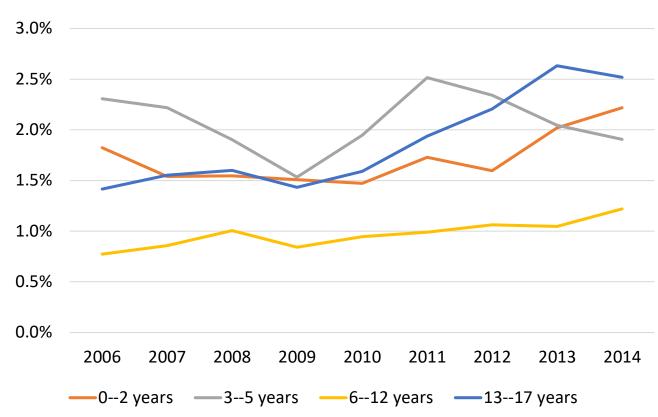







#### Percent Female for CWDA Cases and Non-Cases





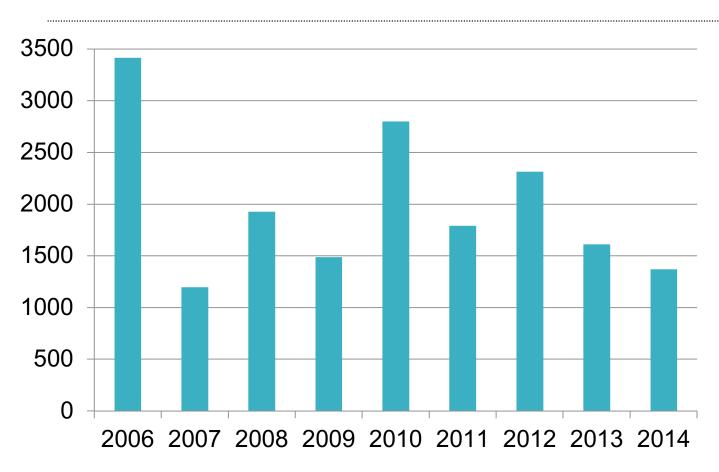







#### **Annual Prevalence of CWDA by Age Group**









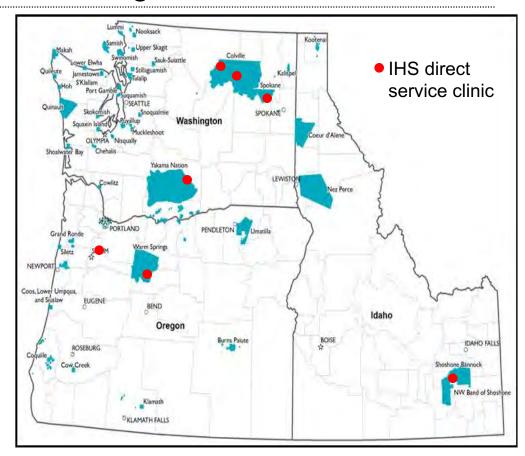



#### Frequency of CWDA Encounters, by Year (2006—2014)



17,915 unique encounters with CWDA diagnoses





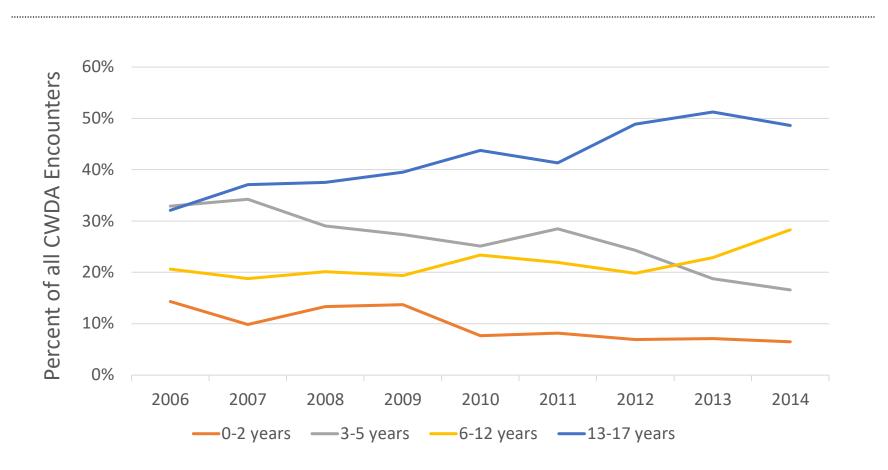





#### 17,915 encounters with CWDA diagnosis

- Location
  - 72% at Tribal/638
  - 11% at IHS/direct service
  - 8% Contract health
  - 8% Missing





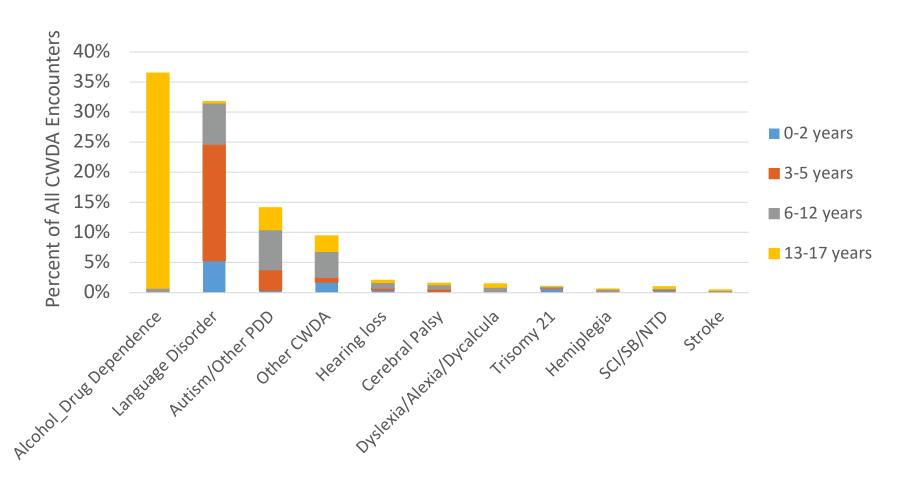







#### CWDA Encounters by Age Group, 2006-2014












#### Age Distribution of Disabling Diagnoses for Encounters



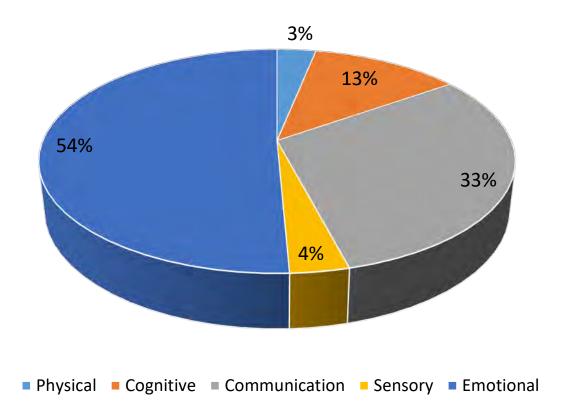








| Overall                | 2006                       | 2007                       | 2008                       | 2009                   | 2010                   | 2011                       | 2012                 | 2013                       | 2014                   |
|------------------------|----------------------------|----------------------------|----------------------------|------------------------|------------------------|----------------------------|----------------------|----------------------------|------------------------|
| Speech/<br>Language    | Speech/<br>Language        | Speech/<br>Language        | Speech/<br>Language        | Speech/<br>Language    | Speech/<br>Language    | Speech/<br>Language        | Speech/<br>Language  | Speech/<br>Language        | Speech/<br>Language    |
| Mental<br>Health       | Mental<br>Health           | Mental<br>Health           | Mental<br>Health           | Mental<br>Health       | Mental<br>Health       | Mental<br>Health           | Mental<br>Health     | Mental<br>Health           | Mental<br>Health       |
| Soc/Behav              | Soc/Behav                  | Soc/Behav                  | Soc/Behav                  | Soc/Behav              | Soc/Behav              | Soc/Behav                  | Soc/Behav            | Soc/Behav                  | Soc/Behav              |
| Hearing                | Hearing                    | Hearing                    | Hearing                    | Hearing                | Hearing                | Hearing                    | Hearing              | Hearing                    | Hearing                |
| Non-traumatic<br>brain | СР                         | Genetic<br>Disorder        | СР                         | Non-traumatic<br>brain | Genetic<br>Disorder    | Stroke                     | Genetic<br>Disorder  | Genetic<br>Disorder        | Learning<br>Disorder   |
| Learning<br>Disorder   | Genetic<br>Disorder        | СР                         | Genetic<br>Disorder        | Stroke                 | Non-traumatic<br>brain | СР                         | СР                   | СР                         | СР                     |
| CNS anomaly            | Learning<br>Disorder       | Visual                     | CNS<br>anomaly             | Congenital<br>MSK      | Other Med<br>Complex   | CNS<br>anomaly             | CNS<br>anomaly       | Learning<br>Disorder       | Genetic<br>Disorder    |
| Stroke                 | Non-<br>traumatic<br>brain | CNS<br>anomaly             | Non-<br>traumatic<br>brain | CNS anomaly            | Stroke                 | Genetic<br>Disorder        | Learning<br>Disorder | Visual                     | Dev Delay              |
| Genetic<br>Disorder    | Plegia/<br>Paresis         | Learning<br>Disorder       | Learning<br>Disorder       | СР                     | CNS anomaly            | Learning<br>Disorder       | Other Med<br>Complex | Plegia/<br>Paresis         | CNS anomaly            |
| Cerebral<br>Palsy      | CNS<br>anomaly             | Non-<br>traumatic<br>brain | Plegia/<br>Paresis         | Genetic<br>Disorder    | СР                     | Non-<br>traumatic<br>brain | Stroke               | Non-<br>traumatic<br>brain | Non-traumatic<br>brain |



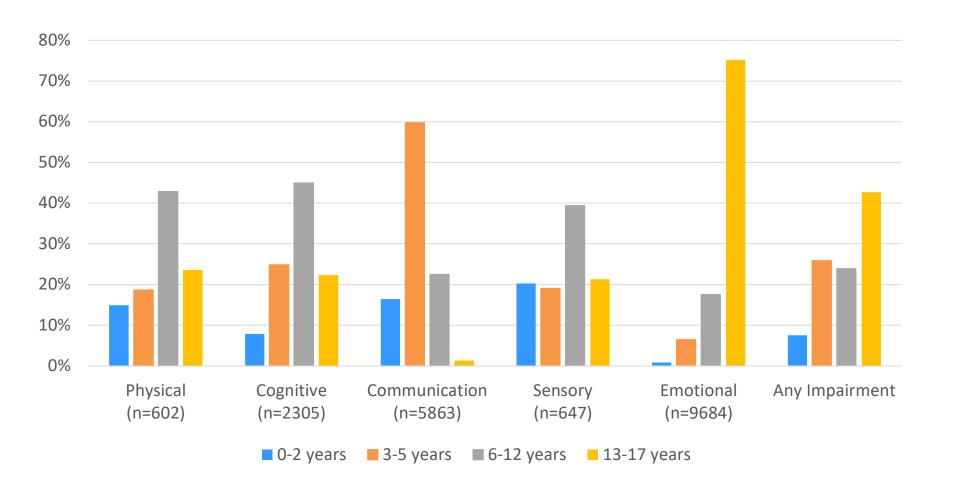







# **Types of impairments for CWDA Encounters**












#### Age Distribution of Impairments for CWDA Encounters











# Clinic Type and Primary Provider Type for CWDA Encounters

| Clinic Type    | n    | % of encounters |  |
|----------------|------|-----------------|--|
| Mental Health  | 9412 | 52.5            |  |
| Primary Care   | 3491 | 19.5            |  |
| Rehab Services | 527  | 2.9             |  |
| Pharmacy       | 297  | 1.7             |  |
| Diagnostics    | 218  | 1.2             |  |
| Home Care      | 160  | 0.9             |  |
| ER/Urgent Care | 86   | 0.5             |  |
| Other          | 332  | 1.9             |  |
| Missing        | 3019 | 16.9%           |  |

| Primary<br>Provider Type | n    | % of encounters |
|--------------------------|------|-----------------|
| Counselor                | 7235 | 40.4            |
| Rehab Therapist          | 3032 | 16.9            |
| Physician/ARNP/PA        | 2235 | 12.5            |
| Nurse/CNA/MA             | 1725 | 9.6             |
| Pharmacist               | 353  | 2.0             |
| Diagnostic specialist    | 173  | 2.0             |
| Other                    | 1603 | 8.9             |
| Missing                  | 1506 | 8.7             |

n=17,915 Encounters









#### Discussion

Why is the prevalence of children with CWDA diagnostic codes in the PAIHS encounter records so low??

#### Possible reasons

- Different methods of identifying disability
  - Self-report versus provider-identified
- Native children with disabilities in the PNW may receive primary care outside of the IHS/Tribal health system
  - Is care culturally appropriate?









#### Discussion

- Speech Language disorders were the second most prevalent type of potentially disabling diagnosis
  - 32% of children with CWDA diagnoses
    - But only 17% of encounters were with a Speech Language Pathologist
  - Are diagnoses reflective of true language or communication impairment?
    - Not much literature about linguistic development in Native children









#### Discussion

- Very few children with traumatic injuries, <20 children with TBI or spinal cord injury
  - Based on AI/AN injury literature, we expected more traumatic diagnoses









# Limitations of Study

- Diagnoses included (or excluded) from CWDA
  - Included drug-related ICD codes, but not alcohol
  - FASD not included
  - Depression?
  - Arthritis and other rheumatologic disorders
- Dental visits were not recorded reliably in the data-base
- Limited geographic are (PNW)
- Does not include information for Native children who receive care outside of IHS and tribal health systems









# **Conclusions**

- This is the first study to describe American Indian/Alaska Native children with disabilities:
  - Using IHS administrative data
  - Using the CWDA algorithm
- The prevalence of disabilities identified (1.5%) was much lower than has ben described using census data (~8%)
- The 3 most common diagnosis categories accounted for >80% of patients:
  - 37% Substance use disorders
  - 32% Speech/Language disorders
  - 14% Autism/Persistent Developmental Delays









# Next steps - Understanding the Experience and Priorities of AI/AN Children with Disabilities and Their Families

- In-depth interviews
  - AI/AN youth (age 7-24) with disabilities/functional differences
  - Parents/caregivers of AI/AN children/youth (6 months to 17-yearsold) with functional differences
- Questions to elicit experience of health, activity, participation, health/rehabilitation service utilization, intersection with culture
- Identify priorities of consumers/communities in order to develop culturally-relevant interventions









#### Further down the road – Other stakeholder input

Elicit opinion of stakeholders other than individual/family

- Tribal leaders (tribal government/council, community program directors, elders)
- Adults with childhood/adolescent onset disabilities
- PCPs and Rehab professionals

Stakeholder engaged intervention development and testing

Crossing fingers that grants get funded!









# Thank you!





